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Abstract

To explain how the human brain represents and organizes meaning, many theoretical

and computational language models have been proposed over the years, varying in

their underlying computational principles and in the language samples based on

which they are built. However, how well they capture the neural encoding of lexical

semantics remains elusive. We used representational similarity analysis (RSA) to eval-

uate to what extent three models of different types explained neural responses eli-

cited by word stimuli: an External corpus-based word2vec model, an Internal free

word association model, and a Hybrid ConceptNet model. Semantic networks were

constructed using word relations computed in the three models and experimental

stimuli were selected through a community detection procedure. The similarity pat-

terns between language models and neural responses were compared at the commu-

nity, exemplar, and word node levels to probe the potential hierarchical semantic

structure. We found that semantic relations computed with the Internal model pro-

vided the closest approximation to the patterns of neural activation, whereas the

External model did not capture neural responses as well. Compared with the exem-

plar and the node levels, community-level RSA demonstrated the broadest involve-

ment of brain regions, engaging areas critical for semantic processing, including the

angular gyrus, superior frontal gyrus and a large portion of the anterior temporal lobe.

The findings highlight the multidimensional semantic organization in the brain which

is better captured by Internal models sensitive to multiple modalities such as word

association compared with External models trained on text corpora.
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model

1 | INTRODUCTION

Our ability to navigate within a network of concepts and retrieve cor-

responding linguistic labels allows us to think, communicate, and make

sense of the world. How the human brain represents and organizesYang Yang and Luan Li contributed equally to this work.
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meaning has therefore always been at the forefront of scientific

explorations. Recent advancements in natural language processing

and large human-generated language norms have made it possible to

develop language models and hypotheses about how lexical-semantic

representations are organized. These models have shown great suc-

cess in performing semantic tasks and predicting human behavior. Yet

to reveal the psychological reality of these models, it is critical we

evaluate how well they relate to encoding of lexical meaning in the

brain, which is still poorly understood.

One way to model semantic representations is the corpus-based

distributional semantics approach. It holds that word meanings are

derived from words’ statistical co-occurrence patterns in language

use, which could be extracted from large text corpora. Advancement

in computing power and access to larger and better corpora in recent

decades has spurred many word embedding models built within this

approach. They represent a word's meaning in a high-dimensional

semantic space by extracting its co-occurrence probabilities with

other words from the text (e.g., Latent Semantic Analysis, Landauer &

Dumais, 1997; word2vec, Mikolov et al., 2013). The relationships

between two words can thus be measured as the overlap between

their high-dimensional vectors that encode the context in which they

are used, which is typically measured as a cosine similarity.

These models have successfully predicted several aspects of

semantic cognition (for a recent review, see Lenci, 2018). Word vector

similarities derived from these models were found to correlate with

similarities computed from brain activity patterns (Anderson

et al., 2019; Carota et al., 2017; Carota et al., 2021; Fu et al., 2022;

Pereira et al., 2018; Xu et al., 2018). However, they have also been

criticized for making no connections to the phenomenal experience of

us human beings (Barsalou, 2008, 2016), particularly given the accu-

mulating evidence for sensory-derived neural representations in

which conceptual knowledge is grounded (Binder et al., 2016;

Binder & Desai, 2011; Fernandino et al., 2022; Martin, 2016;

Patterson et al., 2007). Due to the lack of symbol grounding, distribu-

tional models also failed to represent word meanings in novel situa-

tions (Glenberg & Robertson, 2000), further questioning the

psychological plausibility of the mechanisms by which they could build

up semantic representations. To reconcile, there have been some

attempts at incorporating experience-related information into

corpora-derived features in computational models (Bruni et al., 2014;

Chen et al., 2017; Hoffman et al., 2018; Johns & Jones, 2012). Some

opted for the addition of sensory-perceptual data into distributional

data to form hybrid multimodal models (Johns & Jones, 2012). Some

showed that semantic representations, including sensorimotor proper-

ties (Hoffman et al., 2018) and taxonomic structures (Chen

et al., 2017), could emerge from sequences of co-occurrences under

the distributional principle, suggesting mechanisms by which distribu-

tional models might be able to acquire interpretable associations for

lexical concepts given additional information. Still, text-based distribu-

tional models themselves inadequately account for the full dimensions

of semantic knowledge.

A related distributional view of meaning that does not use latent

dimensions is the semantic network view. Like the distributional view,

the relatedness between two words is captured by the distribution of

direct and indirect paths connecting two nodes. In contrast to the dis-

tributional view, localist representations are used in which words are

represented as individual nodes in a network connected through

edges. This view has a long tradition rooted in the hierarchical taxo-

nomic models (Collins & Quillian, 1969) and the spreading activation

framework (Collins & Loftus, 1975; Quillian, 1967). In contrast to pre-

vious theoretical work, modern network-based approaches exploit

recent large-scale empirical datasets of human-generated features

and word relations to build networks that allow probing the relation-

ships between nodes as well as the topological structure of the net-

work (De Deyne et al., 2019; De Deyne & Storms, 2008). Among

them, the free association task has been gaining increasing popularity

in recent years. In this task, participants are asked to provide the first

words that come to mind when seeing or hearing a cue word. Because

it is unconstrained, compared with other tasks such as feature listing

or taxonomic judgment, it has the potential to uncover the full

breadth of conceptual representations. As such, word relations

derived this way are considered to best approximate our inner con-

ceptual representations (Jorge-Botana et al., 2018), including multidi-

mensional semantic knowledge, encompassing distributed, grounded,

and aggregated world experience. Several large-scale word-free asso-

ciation norms have been developed in different languages thanks to

online crowdsourcing data collection. Associative models derived

thereof could also reliably predict response latencies in lexical deci-

sion and word naming tasks, as well as semantic relatedness judg-

ments (De Deyne et al., 2019; De Deyne & Storms, 2008).

The distributional and the localist network-based approaches

diverge on the language samples based on which lexical semantic rep-

resentations are computed. Distributional models derive semantic

spaces for words from external language stimuli (i.e., text) and can

thus be seen as external language models. Here, we refer to free asso-

ciation models as internal models since they are obtained directly

from human judgments, which reflect both linguistic and non-linguistic

experiences. Although both the external and internal models reflect

aspects of lexical semantic dimensions, measures that transform

words’ association strength and consider the large-scale network

structure in internal models better-captured relatedness and similarity

judgments than the word similarity measures from external models

(De Deyne et al., 2016; De Deyne et al., 2019); and when both

models were supplemented with additional visual and/or affective

features, internal models continued to predict behavioral performance

better than external models (De Deyne et al., 2021).

It is nonetheless unclear whether the relational information com-

puted from internal models based on subjective, behavioral tasks

maps onto the neural activation in the brain—the true internal

architecture—better than that from external models. One way to

address this open question is to construct some words’ semantic rep-

resentations using different language models, obtain representational

dissimilarity matrices (RDMs) of the word pairs, and conduct represen-

tational similarity analysis (RSA) between the model RDMs and neural

RDMs of brain responses to the words (Kriegeskorte et al., 2008). Pre-

vious neuroimaging research has not reached a consensus on this
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matter. Using the RSA method, Fernandino et al. (2022) compared

RDMs of words built using a range of internal and external language

models. They found that all models predicted similar structure of

meaning-related neural activation patterns across the brain's language

network with particularly strong activations in left angular gyrus (AG),

precuneus (PCun), superior frontal gyrus (SFG) and inferior frontal

gyrus (IFG), but only the model based on aspects of nonlinguistic

experiential information, a type of internal model, independently

accounted for variance in the neural data after controlling for the pre-

dictions of other models (for similar results, see Tong et al., 2022). On

the other hand, it is also possible that external and internal models

capture distinct semantic computations and therefore their neural cor-

relates might be found in different brain regions. Carota et al. (2021)

compared word2vec and an internal taxonomic model and found that

they correlated with different patterns of neural activations. Specifi-

cally, word2vec had significantly higher correlations with activations

in left IFG and AG, while the taxonomic model had a higher correla-

tion in left posterior middle temporal gyrus (pMTG). Xu et al. (2018)

also found distinct neural correlates of external distributional associa-

tions in the left temporoparietal junction (TPJ) and internal taxonomic

relations in the anterior temporal lobe (ATL).

Note that in the previous work, word representations com-

puted using the internal models were based on selected semantic

properties such as taxonomic relations (Carota et al., 2021; Xu

et al., 2018) and experiential attributes (Fernandino et al., 2022;

Tong et al., 2022). The representational spaces used to model word

similarity information in these studies were relatively coarse,

encompassing only partial dimensions. Whereas neural representa-

tions of meaning should encode much finer-grained information

about all aspects of lexical concepts. In this respect, these models

might not be able to provide a full match on the mental semantic

structure and approximate the neural response patterns. We aim to

address this issue by using free word association data to compute

the internal language models.

In this study, we investigate which types of theoretical language

models better respect lexical semantics represented in the human

brain. Three relational lexical networks were constructed based on

free word associations, word2vec, and ConceptNet, leading to inter-

nal, external, and hybrid language models. The word associations were

acquired from a new dataset taken from the Chinese Small World of

Words (SWOW-ZH) project (Li et al., under review). ConceptNet was

used as an example of hybrid models in this study. In ConceptNet,

words are labeled with 36 different types of relations by humans, such

as “capable of” and “is used for.” Importantly, a retrofitting procedure

was used to combine these human-annotated relations with distribu-

tional information pre-trained with word2vec (Mikolov et al., 2013)

and GloVe (Pennington et al., 2014). Thus, ConceptNet represents an

endeavor to reconcile localist and distributional approaches to seman-

tic representations. ConceptNet indeed outperformed other distribu-

tional models in semantic tasks including relatedness judgments,

sentence, and analogy completion (Speer et al., 2017). Therefore, we

use it as a representative hybrid model here. RSA and functional MRI

were used to evaluate how well the representational similarity

predicted by each language model aligns with the neural similarity

from fMRI activation patterns.

We additionally probe how the hierarchical semantic structure

that emerges in language models maps onto the brain. Unlike previous

work that derived semantic categories from human-generated taxo-

nomic relations, we used a community detection algorithm to partition

word nodes that are more densely connected to each other than to

other words into groups to identify shared taxonomic structures

across the three language models. This way we were able to obtain

groups of concepts with minimal subjectivity and maximal depen-

dence on the relationships from respective language samples. We also

explore a prediction from the exemplar theory which stipulates that

taxonomic representations are developed through repeated exposure

to the exemplars of a category (Ashby & Rosedahl, 2017;

Nosofsky, 1986), whereby categorical structures might be repre-

sented by the subordinate exemplars rather than an averaged sum-

mary of the category. The latter would be predicted by the competing

prototype theory (Rosch & Mervis, 1975). To this aim, we also exam-

ined the similarity structures of a set of representative exemplars in

the communities, which were used as the word stimuli in the fMRI

experiment. Thus, RSAs were computed at three levels: community,

exemplar, and node (word).

2 | METHODS

2.1 | Methods overview

We investigated how different language models account for the

neural organization of concepts. Three semantic networks were con-

structed based on word association-based (SWOW-ZH), corpus-

based (word2vec), and hybrid (ConceptNet) datasets. Community

detection was performed on each network to obtain the natural

groupings of concepts. fMRI data of word representation were col-

lected on words in the common communities across the three theo-

retical models. The inter-stimulus RDMs were built for each model

and the neural responses. Representational similarity analyses were

performed by comparing the theoretical and neural RDMs within

individual regions (Figure 1). The results revealed which language

models were able to characterize the neural responses in specific

brain areas, and which brain areas represented finer- or coarser-

grained semantic information.

2.2 | The internal model: SWOW

The internal model was based on word associations from the newly

released Chinese SWOW dataset (Li et al., under review). A semantic

network was constructed where nodes corresponded to cues in the

word association data, and edges represented the strength (i.e., the

number of cued responses) between a cue and response word derived

from the word association task. As part of the Small World of Words

project, participants were recruited and performed the task online
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F IGURE 1 Method overview. (a) Community detection was performed in each language model to obtain a group of words that were densely
connected. The ConceptNet and word2vec models were first trimmed so that the network density matched that of SWOW-ZH. (b) The top
9 communities with the highest overlap of words across language models were selected. (c) fMRI data were collected on 72 two-character words,
8 from each of the 9 common communities. The communities were matched on word frequency, visual complexity, and node in-degree in the
SWOW network. (d) Representational dissimilarity matrices of semantic distance were constructed at three levels. The community-level matrix
represented the inter-community distance based on all the cross-model common words in the community. The exemplar-level matrix computed
the inter-community distance based on the experimental word stimuli. The node-level matrix represented the inter-word distance.

4 of 15 YANG ET AL.
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(https://smallworldofwords.org/zh). In each of the 18 trials, partici-

pants were asked to type in three unique words that first came to

their mind when a cue word was presented (De Deyne et al., 2013).

The data were cleaned by removing non-Chinese characters, exclud-

ing strings of more than seven characters, and converting the tradi-

tional Chinese into simplified Chinese characters (github.com/

BYVoid/OpenCC).

A network of concepts was then constructed based on the associ-

ations between word nodes. Two words were connected if one was

the cue and the other was the response word to it. This network

(referred to as SWOW in the following text) is the first Chinese word

association network and by far the largest Chinese semantic network

resource. The data used in the presented study were collected

between years 2016 and 2018, including 543,952 response entries

from 15,870 participants. To control for the sparsity of the network,

only the first response word in each association trial was included.

The total number of unique word concepts in the current network

was 9399.

2.3 | The external model: word2vec

We utilized a word embedding model pre-trained using

word2vec (Mikolov et al., 2013) to characterize the semantic rela-

tions of words according to external resources. This model used the

Baidu Encyclopedia corpus that contained approximately one billion

tokens (https://github.com/Embedding/Chinese-Word-Vectors).

The vocabulary consisted of the 24,922 most frequent words. A

skip-gram word2vec model was trained to construct a

300-dimensional feature space based on word co-occurrence statis-

tics (window size = 5, sub-sampling rate = .0001, negative sample

number = 5, learning rate = .025).

2.4 | The hybrid model: ConceptNet

To examine the joint effect of external and internal representation

of concepts in accounting for the neural responses, we constructed

a theoretical RDM using ConceptNet Numberbatch word vectors

v17.06, a hybrid of knowledge graph (ConceptNet) with annotated

word relations and multiple pre-trained word embedding models,

namely word2vec, GloVe, and OpenSubtitles 2016 (https://github.

com/commonsense/conceptnet-numberbatch). By incorporating

graph-structured knowledge into fully corpus-based distributional

semantics, ConceptNet Numberbatch outperformed many other

systems in various evaluations of word relatedness (Speer

et al., 2017). ConceptNet Numberbatch is multilingual, meaning that

words in different languages share the same semantic space. The

dimension of the vector representations in this model was 300. We

note that the Hybrid model in this study was not a combination of

the current Internal and External models. Rather, it is an example of

hybrid models in the sense that it draws from both corpus-based

distributional information and annotated relations produced by

humans.

2.5 | Community detection within each
language model

A community is a group of nodes that are more densely connected

with each other than with other nodes. We performed community

detection of the semantic networks derived from the three language

models to obtain natural groupings of word concepts following a

data-driven approach.

The vector representations from the word2vec and ConceptNet

models could be viewed as fully connected networks. They have large

community sizes with far more nodes and edges than the SWOW net-

work. To allow for direct comparisons in terms of the network struc-

ture, we trimmed the word2vec and ConceptNet networks so that

their network density, that is, the proportion of the number of actual

edges to the number of all the possible edges, was comparable to that

of SWOW. The trimming procedure was done step-by-step, removing

the edges with the smallest cosine similarity until the density approxi-

mated that of SWOW. Admittedly, the final networks in our analysis

still differed in size (Table 1). Yet, by aligning the network density, we

were able to focus on the communities that have a similar level of

connectivity and are thus more comparable.

Community detection was then performed using the Louvain

method (Blondel et al., 2008), a heuristic greedy algorithm that opti-

mized the Newman-Girvan modularity, implemented in the Python

toolkit NetworkX (https://networkx.org/; Hagberg et al., 2008). The

detections yielded modularity scores of 0.34, 0.63, and 0.57 for

the SWOW, word2vec, and ConceptNet networks, respectively, sug-

gesting good partitions of the three networks (Table 1).

2.6 | Identifying common communities across
models

To investigate how different language models account for neural rep-

resentations of semantic concepts, we focused on a subset of commu-

nities that met two criteria: (1) they were consistently present in all

three semantic networks, and (2) each formed a distinct semantic cat-

egory that could be interpreted by humans.

The number of overlapping nodes over all the possible triplets of

communities (one community per network) was first computed. For

each triplet, we then calculated the proportion of common nodes over

all the unique words in the triplet and selected the top nine triplets

with the highest overlap rates. Three native speakers were indepen-

dently presented with the overlapping words and asked to name the

topic for each triplet. The names provided by them were highly con-

sistent across individuals (Table 2; Table S1), indicating that the identi-

fied words covered a diverse range of topics. These communities

were then used to sample stimulus words for the fMRI task.

2.7 | Stimuli of fMRI task

We sampled 72 two-character words, with eight words from each of the

nine common communities. Three native speakers were independently

YANG ET AL. 5 of 15
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asked to select 82-character words from each community that they con-

sidered “typical exemplars of that community.” The resulting words were

further balanced across communities based on: (1) visual complexity,

namely the number of strokes of the Chinese characters in a word

(F(8,63) = .73); (2) in-degree of the node (word) in SWOW, which has

been found to affect the behavioral performances on semantic tasks

(De Deyne & Storms, 2008; F(8,63) = .26); and (3) word frequency in

SUBLEX-CH database (Cai & Brysbaert, 2010; F(8,63) = .90), all ps >.05.

In addition, a set of eight proper nouns referring to places were gener-

ated as the probes for the semantic detection task (described below).

2.8 | Participants

Twenty-one adults (13 female; mean age 22.5 years, age ranged from

18 to 29 years) were recruited in the fMRI experiment. All the partici-

pants were native Chinese speakers, right-handed, had normal or

corrected-to-normal vision, and had no self-reported history of neuro-

logical diseases. All the participants gave written informed consent

prior to the experiment. The procedure was approved by the East

China Normal University Committee on Human Research Protection.

2.9 | Experimental paradigm and procedure

The fMRI task adopted a rapid event-related design (Kriegeskorte

et al., 2008). A list of 72 concepts and eight place names was

presented for 12 iterations (Figure 2). The word order in each presen-

tation was pseudo-randomized. The 12 presentations were separated

into six runs, two presentations per run. A run started with a 10-s fixa-

tion period and lasted about 410 s. In each stimulus trial, a two-

character word was displayed at the center of the screen for 500 ms,

followed by a fixation cross. The duration of the fixation was 3500 ms

for 1/4 of the trials and 1500 ms for 3/4 of the trials, the distribution

of which was pseudo-randomized within each presentation. Partici-

pants were asked to pay attention to the words and press a button

TABLE 1 Properties of the inter-
word semantic networks.

Model SWOW word2vec ConceptNet Numberbatch

Number of nodes 6525 6771 7981

Number of edges 127,983 131,115 167,404

Number of communities 39 539 97

Average community size 167.3 12.7 82.9

Max community size 1365 936 2194

Minimum community size 4 2 2

Density 0.006 0.005 0.006

Modularity 0.342 0.625 0.571

TABLE 2 Nine most consistent communities across language models.

Community Number of all nodes in the triplets Number of overlapping nodes Overlap rate (%)

Food 817 304 37.2

Sports 154 41 26.6

Music 200 53 26.5

Economics 702 131 18.7

Astronomy 118 18 15.3

Crime 222 32 14.4

Social interaction 1456 203 13.9

Animal 405 51 12.6

Emotion 1363 164 12.0

F IGURE 2 Experimental paradigm. In each presentation,
80 words were presented once in pseudorandomized order. Each

word was followed by a fixation cross. Participants were asked to
press a button when a place name was presented. The scan was
composed of six runs, two presentations per run.
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each time they saw a probe: a proper noun denoting the name of a

place.

2.10 | MRI acquisition

Participants were scanned in a 3 T MRI scanner (Siemens Prisma;

Siemens, Erlangen, Germany) using a 64-channel head coil. Func-

tional images were acquired using a single-shot T2*-weighted

gradient-echo echo-planar imaging pulse sequence (TR = 1000 ms,

TE = 32 ms, flip angle [FA] = 55�, each volume comprising 72 axial

slices, matrix = 96 � 96, field of view [FoV] read = 192 mm, voxel

size = 2 � 2 � 2 mm3). T1-weighted anatomical image was acquired

using a multi-echo MPRAGE sequence, TR = 2300 ms,

TE = 3.32 ms, FA = 8�, matrix = 256 � 256, FoV read = 240 mm,

slice thickness = .9 mm).

2.11 | Image preprocessing

Functional images were preprocessed using fMRIPrep pipeline 20.1.1

(Esteban et al., 2019). Head motion correction was performed using

MCFLIRT (FSL 5.0.9). Slice timing correction was performed using the

AFNI 3dTshift. Images were normalized to the MNI152 template.

AFNI 3dDeconcolve was used to fit a general linear model for each

voxel, where all the trials of interest were modeled, and the six rigid-

body head motion parameters were included as nuisance regressors.

The time series were then high-pass filtered with a cutoff of 128 s.

2.12 | Constructing theoretical representational
dissimilarity matrices

To represent different hypotheses of semantic organization, RDMs of

the pairwise distance between stimulus words were constructed. The

inter-concept distance in the sparse graph of SWOW was measured

by the weighted shortest path length. The distance between words

i and j was calculated as Dij ¼
Pn

k¼1
1
ek
, where n is the total number of

steps in the shortest path from i to j, and ek is the cue-response fre-

quency of the pair of words on step k. The minimal value of the dis-

tance from word i to j and the distance from j to i was used as the

distance between i and j to construct a symmetrical RDM. The inter-

concept distance in the word2vec and ConceptNet Numberbatch was

measured using two metrics: (a) the 1—cosine similarity of the vector

representations of words, and (b) the weighted shortest path in the

sparse graphs derived from the two embedding models, which used

the same metric as the SWOW-based RDM. Including two metrics

allowed for a more comprehensive comparison between the internal,

hybrid, and external models. Thus, in total, five 72�72 inter-word

RDMs were constructed, and we use the following acronyms for

them: SWOW_g, CON_g, CON_v, W2V_g, and W2V_v, where “_v”
and “_g” refer to the two metrics used to compute inter-concept

distance.

To investigate the neural organization at the categorical level, we

also constructed two types of 9 � 9 inter-community RDMs. The

mean distance between all pairs of words from a pair of communities

was computed to represent the inter-community distance. The exem-

plar RDMs were computed based on the stimulus words, whereas the

community RDMs used all the words in the corresponding behavioral

or corpus dataset in each community to characterize the community

(Figure 1). The community RDMs included information about con-

cepts that were not in the fMRI experiment but provided a characteri-

zation of the communities that were not biased by the specific

stimulus set.

2.13 | Representational similarity analysis

Participant-specific responses to each trial of the target word were

estimated using general linear models implemented with the AFNI

3dLSS function (https://afni.nimh.nih.gov/pub/dist/doc/program_

help/3dLSS.html), in which a single target trial was estimated using

one regressor and all the rest of the trials were estimated

using another regressor (Mumford et al., 2012). The beta estimates of

12 presentations of the same word concept were then averaged, pro-

ducing 72 estimates per voxel per participant.

RSA was performed on a regional basis using Nilearn (http://

nilearn.github.io/) in Python. The Harvard-Oxford atlas (Desikan

et al., 2006) was used to define a total of 96 regions of interests

(ROIs) in both hemispheres. Pairwise Euclidean distance between

words was calculated over all the voxels within each ROI, resulting in

92 72 � 72 dissimilarity matrices per participant. These neural RDMs

were averaged across participants to represent how the neural

response patterns associated with representing individual concepts

were dissimilar from each other at the group level. The 9 � 9 neural

RDMs at the exemplar level were constructed in the same way as the

theoretical RDMs.

Representational similarity between the neural RDM and each

theoretical RDM at the node level was measured using Spearman's

correlation over the pairs of vectorized RDMs (upper triangles without

diagonals) for each ROI. The community-level similarity was computed

between the exemplar-level neural RDMs and the theoretical RDMs

at the exemplar level or at the community level. The resulting similar-

ity map was tested against a null-hypothesis distribution, in which the

similarity was computed using randomly shuffled RDMs over 5000

iterations. The significance test was performed at a false discovery

rate (FDR) q value of .05.

3 | RESULTS

3.1 | Comparison of the theoretical models

Representational dissimilarity matrices of concepts were constructed

based on internal word association data (SWOW_g), multi-source

knowledge graph (hybrid model, CON_g and CON_v), and external

YANG ET AL. 7 of 15
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corpus-based word embeddings (W2V_g and W2V_v) at the commu-

nity, exemplar, and node levels (Figure 3). At the community level,

where the concepts within a community were collapsed, the similarity

between SWOW and the other models ranged from 0.56 to 0.63

(Figure 4). The similarities between the word2vec- and ConceptNet-

derived models ranged from 0.72 to 0.91, the mean of which was sig-

nificantly larger than the mean similarity between SWOW and the

other models (Mann–Whitney U test on Fisher's z-transformed corre-

lations, U = 0, n1 = 6, n2 = 4, two-tailed p = .0095). At the exemplar

and the node levels, word2vec and ConceptNet RDMs were also

F IGURE 3 Representational dissimilarity
matrices of concepts based on different
hypotheses. The 9 � 9 matrices in Columns
1 and 2 used different methods to
characterize inter-community distances. The
72 � 72 matrices in Column 3 characterized
inter-word distances. Matrices in different
rows represented the inter-concept relations
computed in different language models.
SWOW_g: RDM constructed using data of
SWOW and graph-theory-based metrics of
inter-concept distance, namely the weighted
shortest path. CON_g: RDM using
ConceptNet Numberbatch and graph-
theory-based metrics. CON_v: RDM using
ConceptNet Numberbatch and vector-based
metrics of inter-concept distance, namely (1—
cosine similarity). W2V_g: RDM using
word2vec and graph-theory-based metrics.
W2V_v: RDM using word2vec and vector-
based metrics. The Communities 1 to
9 corresponded to Food, Sports, Music,
Economics, Astronomy, Crime, Social
interaction, Animal, and Emotion.
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more similar to each other than to SWOW (exemplar: U = 2,

p = .0286; node: U = 1, p = .0190). Thus, SWOW is consistently

more distinct from word2vec or ConceptNet at all three levels of

representations.

3.2 | Similarity between the neural representation
and different theoretical models

The participants’ performance in the detection task was at ceiling

(overall: M accuracy = .99, SD = .004; detection words:

M accuracy = .96, SD = .035). Therefore, all target trials were

included in the analysis of the fMRI data.

The similarity between each theoretical RDM and the neural

RDM of each anatomically defined region was computed and thre-

sholded against the null distribution generated by a 5000-iteration

random permutation. At the community level, SWOW was found to

resemble the neural representations of concepts in multiple regions in

the left temporal–parietal-occipital network, the superior frontal

gyrus, and several of the right-hemisphere homologs (Figure 5a;

Table 3). By contrast, only one region showed similarity with one of

the ConceptNet RDMs (CON_v) at the community level, specifically

the right frontal operculum (Figure 5d; Figure 5j). No region displayed

similar organization principles with the word2vec RDMs (Figure 5g;

Table 3).

At the exemplar level, neural representations showing significant

correlations with the SWOW-based model were found in 12 regions,

including the left superior temporal gyrus (STG), supramarginal gyrus,

medial temporal lobe, bilateral anterior temporal lobes (ATLs), and

bilateral superior frontal gyri (Figure 5b; Table 3). Representational

similarity patterns in eight regions were significantly correlated with

CON_v, including bilateral ATLs, right posterior temporal cortices, and

right frontal areas (Figure 5e; Figure 5k). Very few or no region was

found similar to word2vec or CON_g (Figure 5e; Figure 5h).

At the node level, 14 ROIs showed significant correlations with

SWOW, including bilateral ATLs, middle and superior temporal corti-

ces, and the fusiform gyrus (Figure 5c; Table 3). Only four regions

showed a significant correlation with CON_v (Figure 5f; Figure 5l),

and fewer regions showed similarity with the other models (Figure 5f;

Figure 5i).

Within SWOW, the three types of characterizations of concept

relations accounted for neural representation to different degrees.

The correlation of neural representation with the community-level

model was significantly greater than with the exemplar-level model

across the ROIs (paired-sample t-test on Fisher's z-transformed corre-

lation, t = 7.06, p = 2.68 � 10�10). The correlation of neural repre-

sentation to the exemplar-level model was significantly greater than

the node-level model across the ROIs (paired-sample t-test on Fisher's

z-transformed correlation, t = 10.11, p = 9.45 � 10�17).

4 | DISCUSSION

To investigate how concepts are represented and organized in the

brain, we built three theoretical language models to compute the

similarity between word nodes, communities defined by exemplars,

and communities defined by all the members. We then investigated

the neural correlates of these relationships using RSA. Three models

that quantified concept relations based on different hypotheses

were included: the Internal model, which was based on large-scale

free word association data; the External word2vec model; and the

Hybrid ConceptNet model, which incorporated experiential informa-

tion into corpus-derived word embeddings. Our results showed that

semantic relations computed with the Internal model provided the

closest approximation on average to the similarity pattern found in

the brain, followed by the Hybrid model. In contrast, semantic rela-

tions computed from the External model had little direct neural map-

ping. Further, among the three levels of semantic relationships

computed from the Internal model, the coarsest community level

demonstrated the broadest involvement of brain regions, compared

with the exemplar and the node levels. These community-level rela-

tions engaged a large portion of the brain regions critical for seman-

tic processing, including the AG, SFG, and a large portion of the

anterior temporal lobe.

F IGURE 4 Pairwise correlations between five different RDMs at the community, exemplar, and node levels.
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Our results offer compelling evidence that the SWOW-based

Internal language model surpasses the corpus-based distributional

model in mapping with the neural similarity structure. Notably, even

when distributional models were supplemented with additional

human-labeled relations (i.e., the Hybrid ConceptNet model), they still

could not match the explanatory power of SWOW. These results are

consistent with prior research indicating that representational similar-

ity structure computed by experience-based models, which we clas-

sify as another type of internal model, outperform external models

like word2vec and GloVe in predicting the neural similarity structure

(Fernandino et al., 2022; Tong et al., 2022). They also align with

behavioral findings showing an advantage of SWOW over external

models in predicting human performance in semantic tasks (De Deyne

et al., 2016; De Deyne et al., 2019; De Deyne et al., 2021).

We found no significant correlation between word2vec and neu-

ral response patterns in any brain region. It is worth noting that previ-

ous research has reported finding conceptual similarities that

correlated with neural similarities using external models like word2vec

(Anderson et al., 2019; Carota et al., 2021; Fu et al., 2022; Xu

et al., 2018). In those studies, either concrete words (Anderson

et al., 2019; Carota et al., 2021) or abstract nouns (Wang et al., 2018)

were used as stimuli, potentially tapping semantic dimensions neces-

sary for computing similarity within the set of stimuli, which might

have been captured by external models to some extent (Bi, 2021).

However, the present study utilized noun stimuli of various catego-

ries, including concrete and abstract concepts. Moreover, the

categories in this study were not arbitrarily chosen but obtained by

community detection that found common taxonomic structures

across language models. While the common communities were used

for a fair comparison between different language models, this

approach overlooked unique concept communities in each language

model. It is likely that our designs allowed us to probe a more general

similarity structure in the semantic space which corpus-based lan-

guage models could not adequately explain.

Consider how corpus-based distributional models like word2vec

are built: it compresses statistical information in a large corpus into a

F IGURE 5 Results of representational
similarity analyses. (a)–(i): Colored brain areas
were the regions showing significant similarity
with different theoretical models of inter-concept
relations. (j)–(l): number of significant regions for
different theoretical models.
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vector space, typically with 300 dimensions through error-driven

training and hyperparameter optimizations, which involve adjusting

various settings to improve performance. It is unclear what informa-

tion is preserved or lost during these tuning processes (Kumar

et al., 2021). It is possible that distributional models are able to

account for the fine-grained neural representations of concepts, but

in a high-dimensional space, all concepts are distinct and far away

from each other, making any characterization of the inter-concept

TABLE 3 Representational similarity (Spearman's correlation) of the region of interest with each theoretical language model. Only 35 out of
96 regions that showed significantly similar organization of concepts with at least one model were listed.

Community Exemplar Node

SWOW_g CON_v SWOW_g CON_g CON_v W2V_g SWOW_g CON_g CON_v W2V_v

L ant STG 0.40 0.41 0.34 0.13

L TP 0.54 0.45 0.13

R TP 0.50 0.40 0.38 0.14

L t-o MTG 0.39 0.45 0.10

L pos STG 0.40 0.35 0.11

L ant STG 0.52 0.43 0.18

R ant MTG 0.43 0.40 0.09

L SFG 0.52 0.50

R ant PHG 0.34 0.35 0.10 0.06

R AG 0.41 0.38

L pos MTG 0.47 0.10

L pos PHG 0.39 0.38

R MFG 0.31 0.08

L pos TFC 0.52 0.43

R SFG 0.32 0.39

R pos TFC 0.35 0.06

L AG 0.49 0.11

R pos CG 0.44 0.43

L pos ITG 0.05

R pos PHG 0.32

L pos SMG 0.40

R pos SMG 0.31

L FO 0.06

R ant TFC 0.07

L ant SMG 0.36

R FO 0.40

L lat SOC 0.55

L ant PHG 0.38

L ant MTG 0.10

R pos STG 0.10

R PP 0.11

R HG 0.08

R oper IFG 0.30

L PT 0.07

L FOC 0.49

Note: No regions showed significant representational similarity with models CON_g, W2V_g, W2V_v at the community level, W2V_v at the exemplar level,

or W2V_g at the node level. Regions were defined according to the Harvard-Oxford atlas.

Abbreviations: AG, angular gyrus; ant, anterior division; CG, cingulate gyrus; FO, frontal operculum; FOC, frontal orbital cortex; HG, Heschl's gyrus; ITG,

inferior temporal gyrus; L, left; lat, lateral; MFG, middle frontal gyrus; MTG, middle temporal gyrus; oper, pars opercularis; PHG, parahippocampal gyrus;

pos, posterior division; PP, Planum Polare; PT, Planum Temporale; R, right; SFG, superior frontal gyrus; SMG, supramarginal gyrus; SOC, superior occipital

cortex; STG, superior temporal gyrus; TFC, temporal fusiform cortex; t-o, temporooccipital part; TP, temporal pole.
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relations difficult to generate. In contrast, the human brain tends to

use low dimensions to characterize the world and perform various

tasks (Bottini & Doeller, 2020). Therefore, semantic relations are likely

computed in the brain with some low-dimensional principles absent

from distributional language models. The results of the community

detection analysis lend some support to this idea. When density was

matched across networks, the word2vec network had a larger number

of communities and greater modularity than the SWOW network

(Table 1). This might be due to the word2vec's ability to characterize

every aspect of semantics associated with the word concepts that are

present in the corpora, leading to the great ability to capture fine-

grained distinctions among concepts and more detailed groupings. By

contrast, when human beings perform word-to-word free association

tasks, the semantic features are unlikely to be analyzed in a compre-

hensive or algorithmic way. The heuristic access to numerous seman-

tic features during free association might lead to a bias toward a

limited number of features each time, resulting in a more inter-

connected representation of concepts.

It should be noted that we used word2vec as a starting point for

comparing SWOW with external models. However, we acknowledge

that there are other computational models (e.g., Transformers) and

methods (e.g., pointwise mutual information) available for computing

distributed word relations from text corpora. They might capture dif-

ferent or additional aspects of semantic knowledge and might provide

a better mapping of neural semantic representations. Future studies

should consider incorporating these alternative models and methods

to further investigate the relationships between language models and

neural semantic representations.

Despite the debate between distributional and localist approaches

to semantic memory, recent evidence indicates that multimodal lan-

guage models incorporating both distributional architecture and

semantic features better explain neural (Anderson et al., 2019) and

behavioral responses (Johns & Jones, 2012) than unimodal models.

They strongly support the neural dual coding framework, which inte-

grates language-derived and sensory-derived knowledge representa-

tions in the brain (Bi, 2021). Our results show that word association

similarities only correlated moderately with word2vec and Concept-

Net similarities, which is consistent with previous findings

(Nematzadeh et al., 2017). This suggests that they capture different

aspects of meaning. Further, word associations likely encode multi-

modal representations containing both distributed and experiential

information. This suggestion is preliminarily supported by research

showing that adding sensory or affective information to corpus-based

models could enhance their performance in semantic tasks, but the

improvement was minimal for the free word association model

(De Deyne et al., 2021), suggesting that word associations already

encode sensorimotor and affective information. Nevertheless, further

investigation comparing word association and experiential models is

warranted which also hinges on a better understanding of the nature

of the relationships encoded in word associations.

We have identified neural representations in widespread regions

in the left temporal–parietal-occipital network, particularly in the

extensive cortex in the ATL, which showed similar patterns to

the SWOW model across all three levels of comparison. These regions

resemble the network identified in previous neuroimaging studies on

semantic cognition (e.g., Binder et al., 2009; Tong et al., 2022). In

particular, the ATL has been widely recognized as a “hub” for cross-

modal semantic processing, with intrinsic connectivity to modality-

specific brain regions (Patterson et al., 2007; Ralph et al., 2017). Our

findings build upon previous research that has established the ATL's

role in encoding conceptual similarity based on experiential features

(Anderson et al., 2019; Fernandino et al., 2022; Tong et al., 2022;

Wang et al., 2018), rated categories (Carota et al., 2017, 2021;

Devereux et al., 2013) as well as distributional information (Anderson

et al., 2019; Pereira et al., 2018; Xu et al., 2018), and extend them by

suggesting that it also encodes free associative relations. Notably, it

encodes not only the relations between lexical concepts (node) but

also the categorical information (community and exemplar) latently

computed through word's relationships with other words.

Our results also highlight other brain regions that were previ-

ously implicated in both unimodal and multimodal integration of

semantic processes. Specifically, significant correlations with the

SWOW model were observed at the community and exemplar

levels in left pSTG. At the community level, we also found signifi-

cant correlations in AG, which is involved in the integration of

semantic information from unimodal inputs (Binder et al., 2009;

Binder & Desai, 2011; Fernandino et al., 2016; Price et al., 2015)

and left SOC, which serves as a visual input source to the temporal

cortex (Humphreys & Riddoch, 2006), bilateral PHG, which is

involved in scene recall and visual environment associations

(Bonner et al., 2016; Epstein et al., 1999) and the orbitofrontal cor-

tex, which processes emotion and value judgments (Wikenheiser &

Schoenbaum, 2016).

Our exploration of three types of conceptual relations yielded

interesting findings. While both the community and the exemplar

RDMs presumably characterized inter-community similarity, the for-

mer showed significantly higher correlations with neural similarity pat-

terns across the brain. Notably, the community-based model used all

the words in the behavioral or corpus dataset for each community to

construct the representational dissimilarity matrix, whereas the

exemplar-based model used the exact sets of words that were pre-

sented in the fMRI study. The present results suggested that the neu-

ral representation of inter-community relations derived from

individual concepts was more similar to an unbiased characterization

of the community than to a stimulus-wise matching representation.

Although the exemplar theory of category learning is strongly sup-

ported by the literature (Ashby & Rosedahl, 2017; Liu et al., 2023), it

likely characterizes the learning process of individual instances better

than the representation of categories (Murphy, 2016). Despite the

mixed results regarding whether the exemplar model or the prototype

model provides a better fit for brain data (Bowman et al., 2020; Mack

et al., 2013), recent research has shown that during the course of cat-

egory learning, exemplar- and prototype-approaches engaged differ-

ent brain systems and both types of representations emerged, while

prototype correlates dominated by the end of learning (Bowman

et al., 2020). Therefore, together with our finding, it is likely that mul-

tiple types of category representation co-exist in the brain, more so as

a summary characterization of its members.
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In conclusion, we have shown that conceptual similarities at

levels of community, exemplar, and word node computed from an

internal, word association model map well onto neural similarities in

a brain network of semantic processing. Notably, it outperformed

an external, corpus-based distributional model and a hybrid model

with both distributional and human-labeled relations in multiple

brain areas. These findings indicate that word associations may

encode conceptual representations with a general similarity princi-

ple that is absent in language models based on text corpora. Addi-

tionally, community-level RSA showed significant effects in broader

brain regions than exemplar- and node-level analyses. This provides

some additional support to previous research on the prototype the-

ory of category representation in the brain. We propose avenues in

which word association models and experiential models might be

compared in future research to disambiguate the nature of the con-

ceptual relations in word associations and to better understand

what information is encoded in the conceptual representation

system.
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